
Office 2008 Developers http://www.microsoft.com/mac/developers/default.mspx?CTT=Page...

1 of 3 3/13/08 12:48 PM

Ranges are not dynamic

In AppleScript, you cannot alter a range without reassigning it to a new variable.

Capture and reassign altered ranges to new variables
The following examples delete duplicate paragraphs using a Text Range object. Compare the following examples:

Visual Basic for Applications (VBA)

Dim AmountMoved As Long
Dim myRange As Range

'start with first paragraph and extend range down to second

Set myRange = ActiveDocument.Paragraphs(1).Range

AmountMoved = myRange.MoveEnd(unit:=wdParagraph, Count:=1)

'loop until there are no more paragraphs to check

Do While AmountMoved > 0

 'if two paragraphs are identical, delete second one

 'and add the one after that to myRange so it can be checked

 If myRange.Paragraphs(1).Range.Text = _

 myRange.Paragraphs(2).Range.Text Then
 myRange.Paragraphs(2).Range.Delete

 AmountMoved =
 myRange.MoveEnd(unit:=wdParagraph, Count:=1)

 Else
 'if two paragraphs aren't identical, add the one

 'after that to my range, so it can be checked, and
 'drop the first one, since it is no longer of

 'interest.
 AmountMoved =

 myRange.MoveEnd(unit:=wdParagraph, Count:=1)

 myRange.MoveStart unit:=wdParagraph, Count:=1
 End If

Loop

AppleScript

tell application "Microsoft Word"
 --start with first paragraph and extend range down to second

 set myRange to text object of paragraph 1
 of active document

 set rangeEnd to end of content of myRange

 --in AppleScript a new range is made and returned, cannot alter
 --ranges in place, so redefine myRange to the new range

 set myRange to (move end of range myRange

 by a paragraph item count 1)
 set newRangeEnd to end of content of myRange

 set amountMoved to newRangeEnd - rangeEnd
 set rangeEnd to newRangeEnd

 --loop until there are no more paragraphs to check

 repeat while amountMoved > 0

 --if two paragraphs are identical, delete second one

 --and add the one after that to myRange so it
 --can be checked

 if content of text object of paragraph 1 of myRange =
 content of text object of paragraph 2

 of myRange then
 delete text object of paragraph 2 of myRange

 set myRange to text object of paragraph 1
 of myRange

 set rangeEnd to end of content of myRange
 set myRange to (move end of range myRange

 by a paragraph item count 1

 set newRangeEnd to end of content of myRange
 set amountMoved to newRangeEnd - rangeEnd

 set rangeEnd to newRangeEnd

 else
 --if two paragraphs aren't identical, add

Office 2008 Developers http://www.microsoft.com/mac/developers/default.mspx?CTT=Page...

2 of 3 3/13/08 12:48 PM

 --the one after that to my range, so it can

 --be checked, and drop the first one, since
 --it is no longer of interest.

 set myRange to (move end of range myRange

 by a paragraph item count 1
 try

 set newRangeEnd to end of content
 of myRange

 set amountMoved to newRangeEnd - rangeEnd
 set rangeEnd to newRangeEnd

 set myRange to (move start
 of range myRange by a paragraph

 item count 1
 on error -- errors because can't get

 --newRangeEnd when move end of range

 --is missing value at end of document
 set amountMoved to 0

 end try
 end if

 end repeat

end tell

These examples differ because in AppleScript, you cannot alter a range and have it continue to be the same range. Ranges are not dynamic. You can change the range, but then you have to reset

the variable myRange to the newly altered one.

To make that possible, the commands that alter ranges have to return the new range so that you can get hold of it. This is fairly straightforward. A command, such as set range, which in its VBA

version does not need to return a result, returns the altered range in AppleScript. Simply reassign it to the same variable (for example, myRange) that it was assigned to before set range, and

carry on as you do in VBA.

Working with the set range command
For example, in the following code, myRange is redefined to end at the end of the third paragraph of the active document:

Set myRange = ActiveDocument.Paragraphs(1).Range

myRange.SetRange Start:=myRange.Start, _
 End:=ActiveDocument.Paragraphs(3).Range.End

In VBA, myRange is still defined, only now it will end at the end of the third paragraph. SetRange does not return a result, and does not need to because myRange has been modified "in place."

In AppleScript, you can't set myRange to the text object (range) of paragraph 1 and then try to extend it over more paragraphs, at least not with the set range command. This causes

Microsoft Word to crash (this is not true for the move end of range command). The myRange variable remains a reference to the first paragraph, and it can't be something else simultaneously.

To solve this problem, create your own range that you set to the same start and end points, and modify that range, as shown in the following example:

tell application "Microsoft Word"

 set par1Range to text object of paragraph 1 of active document

 set myRange to create range active document start (start of content
 of par1Range) end

(end of content of par1Range)
 set myRange to set range myRange start (start of content of myRange)

 end (end of content of (get text object of paragraph 3
 of active document))

 content of myRange
end tell

That works, and there's no crashing. The myRange variable is set to the same dimensions as par1Range, but in terms of a start and an end point, not in terms of belonging to a particular

paragraph. You can now use set range to redefine the end point, but in terms of an integer, not paragraph 3 itself. The set range command returns a result that is a text range, but a new one.

There is no modifying "in place."

To continue referring to it as myRange, you need to redefine the variable myRange to that result. Or, you could set a different variable to the result. However, if your VBA macro expects it still to

be called myRange, your script should, too, to minimize changes.

Commands can't return the number of characters moved
Another option is to avoid using set range entirely, as shown in the following example:

tell application "Microsoft Word"

 set par1Range to text object of paragraph 1
 of active document

 set par3Range to text object of paragraph 3
 of active document

 set myRange to create range active document start
 (start of content of par1Range) end

 (end of content of par3Range)

 content of myRange
end tell

Although commands such as move end of range and move start of range otherwise work the same as MoveEnd and MoveStart in VBA, the fact that they have to return the modified range means

that they cannot return the number of characters moved, as in VBA. However, that's not very hard to find. You can keep getting the end of content of the text object of the range, both before and after

the move, and subtract one from the other to get the difference (amountMoved) as the same amount moved.

It also means that you have to keep updating the variables for rangeEnd and newRangeEnd after performing the subtraction, as in set rangeEnd to newRangeEnd, or you

will "run out of variables." So it just takes a few more lines of code to do the same thing.

In VBA, you can get the number of characters moved by doing the following:

Set myRange = ActiveDocument.Paragraphs(1).Range

AmountMoved = myRange.MoveEnd(unit:=wdParagraph, Count:=1)

This code sets myRange to the range of the first paragraph, and then uses MoveEnd to move the end, another paragraph on. Again, it does so "in place." There's no need to redefine

myRange because it's still there as a dynamic reference, and the MoveEnd method is able to return the integer that represents the number of characters this move has advanced.

This time, in AppleScript, you do not have to create your own range. You can use move end of range on a text range set to the text object of the first paragraph, without crashing. However, you still

cannot modify the range "in place." You have to set myRange, or another variable, to get hold of the new range returned by move end of range, as shown in the following example:

Office 2008 Developers http://www.microsoft.com/mac/developers/default.mspx?CTT=Page...

3 of 3 3/13/08 12:48 PM

tell application "Microsoft Word"
 set myRange to text object of paragraph 1 of active document

 set myRange to (move end of range myRange
 by a paragraph item count 1)

end tell

That works. But, because the command must return the new range as the result, it cannot return the amount moved. That is why so much of the script is concerned with calculating the amount

moved, which isn't difficult (getting and redefining rangeEnd after every move) but is a bit of a bother. As you'll see shortly, there is a simpler way to do it given the necessary difference in the

AppleScript command from the VBA version.

Use error trapping to close the script

Something else to bear in mind with this example is to keep alert at the end of the document. In VBA when you try to do the final MoveEnd on the last paragraph mark, it doesn't error, but simply

returns 0. In AppleScript, move end of range also doesn't error, but returns missing value (for a nonexistent new range that can't be made). That's a sort of null value. However, the next

line that attempts to get end of content of a non-existent range does error.

To solve this problem, you trap the error in a try/on error block and arbitrarily set the amountMoved variable to 0. There are other ways to do this, but this method keeps the same

structure as the VBA macro. Also, this is an opportunity for you to see that AppleScript has a repeat/while loop, too, although it's not used very often.

You can also rewrite the script to keep all of the move end, move start, and delete occurrences, and omit all of the get end of content and amountMoved calculations. You then depend on the

trapped error at the end to close the script in a simple repeat loop with no while.

The optimal code example for this task
The following example is the improved version, optimized for AppleScript:

tell application "Microsoft Word"

 --start with first paragraph and extend range down to second
 set myRange to text object of paragraph 1 of active document

 set myRange to (move end of range myRange by a paragraph item count 1)

 --loop until there are no more paragraphs to check
 repeat

 --if two paragraphs are identical, delete second one
 --and add the one after that to myRange so it can be checked

 if content of text object of paragraph 1 of myRange =
 content of text object of paragraph 2 of myRange then

 delete text object of paragraph 2 of myRange

 set myRange to text object of paragraph 1 of myRange
 set myRange to (move end of range myRange

 by a paragraph item count 1)
 else

 --if two paragraphs aren't identical, add the one
 --after that to my range, so it can be checked,

 --and drop the first one, since it is no longer
 --of interest.

 set myRange to (move end

 of range myRange by a paragraph item count 1)
 try

 set myRange to (move start of range myRange
 by a paragraph item count 1)

 on error -- last paragraph
 --(missing value, so can't move start)

 exit repeat -- finish
 end try

 end if
 end repeat

end tell

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

